Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS Biol ; 20(3): e3001592, 2022 03.
Article in English | MEDLINE | ID: covidwho-1770633

ABSTRACT

Gastrointestinal effects associated with Coronavirus Disease 2019 (COVID-19) are highly variable for reasons that are not understood. In this study, we used intestinal organoid-derived cultures differentiated from primary human specimens as a model to examine interindividual variability. Infection of intestinal organoids derived from different donors with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) resulted in orders of magnitude differences in virus replication in small intestinal and colonic organoid-derived monolayers. Susceptibility to infection correlated with angiotensin I converting enzyme 2 (ACE2) expression level and was independent of donor demographic or clinical features. ACE2 transcript levels in cell culture matched the amount of ACE2 in primary tissue, indicating that this feature of the intestinal epithelium is retained in the organoids. Longitudinal transcriptomics of organoid-derived monolayers identified a delayed yet robust interferon signature, the magnitude of which corresponded to the degree of SARS-CoV-2 infection. Interestingly, virus with the Omicron variant spike (S) protein infected the organoids with the highest infectivity, suggesting increased tropism of the virus for intestinal tissue. These results suggest that heterogeneity in SARS-CoV-2 replication in intestinal tissues results from differences in ACE2 levels, which may underlie variable patient outcomes.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Humans , Organoids , SARS-CoV-2
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1442272.v1

ABSTRACT

How SARS-CoV-2 causes disturbances of the lung microenvironment and systemic immune response remains a mystery. Here, we first analyze detailedly paired single-cell transcriptome data of the lungs, blood and bone marrow of two patients who died of COVID-19. Second, our results demonstrate that SARS-CoV-2 infection significantly increases the cellular communication frequency between AT1/AT2 cells and highly inflammatory myeloid cells, and induces the pulmonary inflammation microenvironment, and drives the disorder of fibroblasts, club and ciliated cells, thereby causing the increase of pulmonary fibrosis and mucus accumulation. Third, our works reveal that the increase of the lung T cell infiltration is mainly recruited by myeloid cells through certain ligands/receptors (ANXA1/FPR1, C5AR1/RPS19 and CCL5/CCR1), rather than AT1/AT2. Fourth, we find that some ligands and receptors such as ANXA1/FPR1, CD74/COPA, CXCLs/CXCRs, ALOX5/ALOX5AP, CCL5/CCR1, are significantly activated and shared among patients’ lungs, blood and bone marrow, implying that dysregulated ligands and receptors may cause the migration, redistribution and the inflammatory storm of immune cells in different tissues. Overall, our study reveals a latent mechanism by which the disorders of ligands and receptors caused by SARS-CoV-2 infection drive cell communication alteration, the pulmonary inflammatory microenvironment and systemic immune responses across tissues in COVID-19 patients.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.16.452680

ABSTRACT

Organoids generated from primary human specimens facilitate investigation of the intestinal barrier by recreating the complex cellular composition of the epithelium. Although the significance remains unclear, intestinal organoid lines display heterogeneity in their growth and morphology. We hypothesized that organoids will also display variability in the degree to which they are susceptible to infectious agents. Using SARS-CoV-2 as a model, we found orders of magnitude differences in the amount of SARS-CoV-2 recovered from small intestinal and colonic organoids generated from different donors. SARS-CoV-2 burden did not correlate with demographic or clinical features associated with donors, but rather reflected the expression level of the virus receptor ACE2. Remarkably, organoid ACE2 transcript levels matched the amount of ACE2 detected in primary tissue from the same individual, indicating that certain properties of the intestinal epithelium are retained during ex vivo differentiation. Longitudinal transcriptomics of organoids identified a delayed yet robust interferon signature, the magnitude of which corresponded to the degree of SARS-CoV-2 infection. These results suggest that intestinal organoids display substantial heterogeneity in their ability to support viral infections and can potentially inform mechanisms behind interindividual differences in susceptibility to infectious disease.


Subject(s)
COVID-19 , Communicable Diseases , Virus Diseases , Colorectal Neoplasms
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.15.21257254

ABSTRACT

Mutations of the coronavirus responsible for coronavirus disease 2019 (COVID-19) could impede drug development and reduce the efficacy of COVID-19 vaccines. Here, we developed a multiplexed Spike-ACE2 Inhibitor Screening (mSAIS) assay that can measure the neutralizing effect of antibodies across numerous variants of the coronavirus's Spike (S) protein simultaneously. By screening purified antibodies and serum from convalescent COVID-19 patients and vaccinees against 72 S variants with the mSAIS assay, we identified new S mutations that are sensitive and resistant to neutralization. Serum from both infected and vaccinated groups with a high titer of neutralizing antibodies (NAbs) displayed a broader capacity to neutralize S variants than serum with low titer NAbs. These data were validated using serum from a large vaccinated cohort (n=104) with a tiled S peptide microarray. In addition, similar results were obtained using a SARS-CoV-2 pseudovirus neutralization assay specific for wild-type S and four prevalent S variants (D614G, B.1.1.7, B.1.351, P.1), thus demonstrating that high antibody diversity is associated with high NAb titers. Our results demonstrate the utility of the mSAIS platform in screening NAbs. Moreover, we show that heterogeneous antibody populations provide a more protective effect against S variants, which may help direct COVID-19 vaccine and drug development.


Subject(s)
COVID-19
5.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3719068

ABSTRACT

Background: COVID-19 has infected tens of millions of people worldwide since its pandemic. CPT is one of the promising treatment methods and is favored by more and more researchers. However, the clinical efficacy and safety of CPT in COVID-19 remains unclear.Methods: We performed a matched control study by PSM analysis (including 163 cases with CPT and 163 controls with the standard treatment) and meta-analysis (including 498 cases and 557 controls) estimate the clinical efficacy and security of CPT and COVID-19, which will help inform clinical management of COVID-19 infection.Results: We found that days of hospital stay in case with CPT groups were significantly higher than matched control group (P< 0.0001). A significant reduction in mortality (OR= 0.496, 95%CI= 0.342-0.719, P< 0.0001) was found in the CPT group compared with the standard treatment group, and a true positive result was also found in sequential analysis. In terms of adverse events, sequential analysis found a false positive, although meta-analysis found a significant increase in the incidence of adverse events in patients treated with CPT compared to the control group. No differences between the two groups in terms of length of stay, improvement of clinical symptoms, and discharge were found.Conclusions: This study is the first to systematically review and meta-analysis the efficacy and safety of CPT in patients with COVID-19 in the largest sample size. Our results showed that CPT could significantly reduce the mortality rate of COVID-19 patients, and there was no significant increase in the incidence of adverse events. These data provide evidence favoring the efficacy and safety of CPT as a therapeutic agent in COVID-19 patients and provide comprehensive reference for COVID-19 treatment.Funding Statement: This work was supported by Scientific Research Project of Jiangsu Commission of Health (H2019065), Key Foundation of Wuhan Huoshenshan Hospital (2020[18]), Key Research & Development Program of Jiangsu Province (BE2018713), Medical Innovation Project of Logistics Service (18JS005).Declaration of Interests: The authors declare no conflicts of interest with this work.Ethics Approval Statement: The authors were approved by the ethics committee of Huoshenshan hospital, and were conducted in accordance with the tenets of the Declaration of Helsinki and its amendments. All participants provided written informed consent for the collection of samples and their subsequent analysis.


Subject(s)
COVID-19
6.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3684422

ABSTRACT

Objectives: Earlier researches suggested patients should be routinely screened for bacteria and fungi infection after COVID-19 being confirmed. Here, we enrolled 236 patients with COVID-19 to analyze the clinical characteristics, fungal strains, mortality, and laboratory data of different groups.Design: Single center retrospective studyPatients: A total of 236 COVID-19 patients from Huoshenshan Hospital were included in this study, consisting of 14(6%) died cases, 222(94%) discharged cases.Results: The result revealed that 5 mortality in positive group were all related to aspergillus infection while candida infection rarely caused death. Aspergillus was most common in non-survivors while candida was most common in survivors. In terms of interleukin-6 (IL6), viral loads, nucleic acid clearance time, etc, fungal serologically positive group had a higher level than negative group.Conclusions: Non-survivors of Covid-19 with fungal infection were almost associated with aspergillus infection. Aspergillus infection, instead of candida infection might be fatal for critical ill patients with COVID-19. There is great significance to carry out routine screening for fungal infection especially for critical patients to enable early treatment to be implemented.Funding Statement: This study was financially supported by grants Key Foundation of Wuhan Huoshenshan Hospital (2020[18]), Key Research& Development Program of Jiangsu Province (BE2018713), Medical Innovation Project of Logistics Service (18JS005).Declaration of Interests: The authors declare no competing interests.Ethics Approval Statement: This study was approved by the Medical Ethical Committee of Wuhan Huoshenshan Hospital (No. HSSLL011). Written informed consent was obtained from each patient.


Subject(s)
Lung Diseases, Fungal , COVID-19
7.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-78282.v1

ABSTRACT

Objective To investigate the epidemiological characteristics, clinical features, treatment and short-term prognosis of SARS-CoV-2 infection in children.Methods A retrospective analysis was conducted in children with SARS-CoV-2 admitted to twelve hospitals in eight cities in Hunan province, China, from January 26, 2020 to June 30, 2020.Results A total of 48 children were enrolled in this study. 11 cases (23%) were asymptomatic, 15 cases (31%) were mild, 20 cases (42%) were moderate, and 2 cases (4%) were severe. No children were critical requiring intensive care. The most common symptom was fever (42%), cough (40%), fatigue (17%) and diarrhea (10%). The total peripheral blood leukocytes count decreased in two case (4%), Lymphocytopenia was present in 5 cases (10%). There were abnormal chest CT changes in 22 children (46%), including 15 (68%) with patchy ground glass opacity. In addition to supportive treatment, 41 children (85%) received antiviral therapy, 11 patients and (23%) were treated with antibiotics, 2 children (4%) were treated with methylprednisolone and IVIG. There was no death occurred.Conclusions Most children with SARS CoV-2 infection in Hunan province were asymptomatic, mild or moderate. Severe cases are rare. Close family contact was the main route of infection. The younger the age, the less obvious symptoms for children might be. Epidemiological history, nucleic acid test and chest imaging were important tools for the diagnosis in children.


Subject(s)
Lymphopenia , Fever , Severe Acute Respiratory Syndrome , Fatigue , Diarrhea
8.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-47848.v1

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 had spread all over the world, causing public health emergency. Although the diagnosis for COVID-19 such as nucleic acid test and antibody detection have been well defined, there is still a big gap of knowledge regarding for COVID-19 patients receiving convalescent plasma transfusion (CPT) therapy, especially patients with comorbidity of diabetes. Method: In this study, out of 3059 COVID-19 patients admitted in Wuhan Huoshenshan Hospital of China, we described the characteristics of 39 diabetes patients receiving the transfusion of ABO-compatible convalescent plasma, and compared the baseline information and clinical outcome with that of 328 diabetes patients receiving traditional treatment. Results: It was found that the intervention of CPT therapy was effective and beneficial for COVID-19 patients, including severe or critical patients with comorbidity of diabetes, without obvious adverse effects observing during the treatments. The CPT therapy significantly improved the clinical outcome of diabetes patients with COVID-19 infection, especially the duration based on six categories compared to the patients with traditional therapy. Conclusions: This study not only provided a better understanding of COVID-19 in diabetes people receiving CPT, but also highlighted the CPT therapy was helpful for COVID-19 patients with comorbidity of diabetes.


Subject(s)
COVID-19 , Coronavirus Infections , Diabetes Mellitus
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.02.20144873

ABSTRACT

In China, the patients with previously negative RT-PCR results again test positive during the post-discharge isolation period. We aimed to determine the clinical characteristics of these recurrent-positive patients. We retrospectively reviewed the data of 15 recurrent-positive patients and 107 control patients with non-recurrent, moderate COVID-19 treated in Wuhan, China. Clinical data and laboratory results were comparatively analyzed. We found that recurrent-positive patients had moderate disease. The rate of recurrent-positive disease in our hospital was 1.87%. Recurrent-positive patients were significantly younger (43(35-54) years) than control patients (60(43-69) years) (P=0.011). The early LOS (length of stay in hospital before recurrence) was significantly longer in recurrent-positive patients (36(34-45) days) than in control patients (15(7-30) days) (P =0.001). The time required for the first conversion of RT-PCR results from positive to negative was significantly longer in recurrent-positive patients (14(10-17) days) than in control patients (6(3-9) days) (P =0.011). Serum COVID-19 antibody levels were significantly lower in recurrent-positive patients than in control patients (IgM: 13.69 {+/-} 4.38 vs. 68.10 {+/-} 20.85 AU/mL, P = 0.015; IgG: 78.53 {+/-} 9.30 vs. 147.85 {+/-} 13.33 AU/mL, P < 0.0001). Recurrent-positive patients were younger than control patients. The early LOS (length of stay in hospital before recurrence) was significantly longer in recurrent-positive group than that in control group. COVID-19 IgM/IgG antibody levels were significantly lower in recurrent-positive group than those in control group, which might explain why the virus RNA RT-PCR was positive after the initial clinical cure(with three times of virus RNA RT-PCR negative). The virus might not be fully eliminated because of the lower IgG level and their later replicating might result in recurrent-positive virus RNA RT-PCR.


Subject(s)
COVID-19
10.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.19.20136093

ABSTRACT

The outbreak of novel coronavirus disease 2019 (COVID-19) has become a pandemic. Drug repurposing may represent a rapid way to fill the urgent need for effective treatment. We evaluated the clinical utility of chloroquine and hydroxychloroquine in treating COVID-19. Forty-eight patients with moderate COVID-19 were randomized to oral treatment with chloroquine (1000 mg QD on Day 1, then 500 mg QD for 9 days; n=18), hydroxychloroquine (200 mg BID for 10 days; n=18), or control treatment (n=12). Adverse events were mild, except for one case of Grade 2 ALT elevation. Adverse events were more commonly observed in the chloroquine group (44.44%) and the hydroxychloroquine group (50.00%) than in the control group (16.67%). The chloroquine group achieved shorter time to clinical recovery (TTCR) than the control group (P=0.019). There was a trend toward reduced TTCR in the hydroxychloroquine group (P=0.049). The time to reach viral RNA negativity was significantly faster in the chloroquine group and the hydroxychloroquine group than in the control group (P=0.006 and P=0.010, respectively). The median numbers of days to reach RNA negativity in the chloroquine, hydroxychloroquine, and control groups was 2.5 (IQR: 2.0-3.8) days, 2.0 (IQR: 2.0-3.5) days, and 7.0 (IQR: 3.0-10.0) days, respectively. The chloroquine and hydroxychloroquine groups also showed trends toward improvement in the duration of hospitalization and findings on lung computerized tomography (CT). This study provides evidence that (hydroxy)chloroquine may be used effectively in treating moderate COVID-19 and supports larger trials.


Subject(s)
COVID-19
11.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-32575.v1

ABSTRACT

Background: Novel coronavirus (COVID-19) is a new viral species that causes pneumonia. Currently, RT-PCR and IgM/IgG antibody assays have been recommended for the diagnosis of COVID-19 infection. However, the correlation between RT-PCR status and antibody (IgG, IgM) response remains unknown. Methods: Consecutive COVID-19 patients admitted to our department between February 10, 2020 and March 10, 2020, were diagnosed by guidelines issued by the World Health Organization (WHO) and included in this study. RT-PCR and antibody (IgM/IgG) assays for COVID-19 infection were performed for all patients according to the manufactures’ protocols. Other data, such as demographic, clinical, laboratory, as well as treatment and outcome, were collected using data collection tables from electronic medical records.Results: During the study period, a total of 103 patients were diagnosed as having a moderate type of COVID-19 at our department, including 55 males and 48 females, with an average age of 57.53 ± 1.65 years old (range 23 to 90 years old). The peak level of SARS-CoV-2 IgM antibody (243.10 ± 89.84 AU/ml) was reported 4 days after the negative RT-PCR (-) (all P < 0.05). Subsequently, the IgM decreased to 42.69 ± 22.39 AU/ml 21 days after RT-PCR (-). However, the IgG was maintained at a high level 4 days before RT-PCR (-) and later. The lymphocyte count was at the lowest level on day7 before the RT-PCR(-) result (P<0.05), and then elevated after RT-PCR conversion (viral clearance).Conclusions: SARS-CoV-2 IgM/IgG levels did not correlate with RT-PCR status in our study sample. We found that SARS-CoV-2 IgM/IgG could be a potential biomarker to monitor clinical course, determine discharge, and assess recovery of those infected patients with the novel coronavirus. Trial registration: A prospective, open label, randomized, control trial for chloroquine or hydroxychloroquine in patients with mild and common novel coronavirus pulmonary (COVIP-19). ChiCTR2000030054. Registered 18 Feb,2020. http://www.chictr.org.cn/edit.aspx?pid=49869&htm=4


Subject(s)
COVID-19 , Pneumonia , Infections
12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.20.20025510

ABSTRACT

Background: Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) outbreaks in Wuhan, China, healthcare systems capacities in highly endemic areas have been overwhelmed. Approaches to efficient management are urgently needed and key to a quicker control of the outbreaks and casualties. We aimed to characterize the clinical features of hospitalized patients with confirmed or suspected COVID-19, and develop a mortality risk index for COVID-19 patients. Methods: In this retrospective one-centre cohort study, we included all the confirmed or suspected COVID-19 patients hospitalized in a COVID-19-designated hospital from January 21 to February 5, 2020. Demographic, clinical, laboratory, radiological and clinical outcome data were collected from the hospital information system, nursing records and laboratory reports. Results: Of 577 patients with at least one post-admission evaluation, the median age was 55 years (interquartile range [IQR], 39 - 66); 254 (44.0%) were men; 22.8% (100/438) were severe pneumonia on admission, and 37.7% (75/199) patients were SARS-CoV-2 positive. The clinical, laboratory and radiological data were comparable between positive and negative SARS-CoV-2 patients. During a median follow-up of 8.4 days (IQR, 5.8 - 12.0), 39 patients died with a 12-day cumulative mortality of 8.7% (95% CI, 5.9% to 11.5%). A simple mortality risk index (called ACP index), composed of Age and C-reactive Protein, was developed. By applying the ACP index, patients were categorized into three grades. The 12-day cumulative mortality in grade three (age [≥] 60 years and CRP [≥] 34 mg/L) was 33.2% (95% CI, 19.8% to 44.3%), which was significantly higher than those of grade two (age [≥] 60 years and CRP < 34 mg/L; age < 60 years and CRP [≥] 34 mg/L; 5.6% [95% CI, 0 to 11.3%]) and grade one (age < 60 years and CRP < 34 mg/L, 0%) (P <0.001), respectively. Conclusion: The ACP index can predict COVID-19 related short-term mortality, which may be a useful and convenient tool for quickly establishing a COVID-19 hierarchical management system that can greatly reduce the medical burden and therefore mortality in highly endemic areas.


Subject(s)
COVID-19 , Pneumonia , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL